
Note: The notes given in this file is no substitute to the much detailed discussion held in the online/contact classes with active participation of students. It, at best, serves the purpose of ready reference for important concepts/derivations covered in the classes.

Friction

Friction is a tangential force that tends to oppose the relative motion between the bodies in contact.

- Friction arises due to irregularities on the surfaces (on microscopic scale)
- Friction is also due to continuous making and breaking of bonds between the surface atoms/molecules of the surfaces in contact

Inseparable books!

Advantages of friction

- ☐ Friction helps us walk, run, stop...
- Heat generated by friction is used in making fire
- We are able to hold our pen and write this sentence due to friction
- Mechanical transmission of power is possible due to friction

Disadvantages of friction

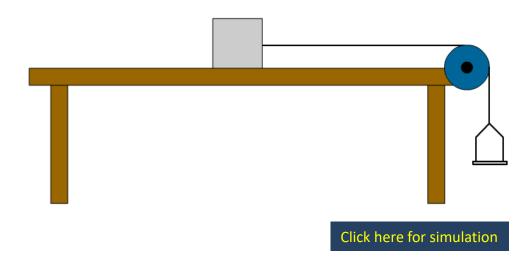
- ☐ Friction leads to loss of power as energy is dissipated in the form of heat
- Friction leads to wear and tear of mechanical parts of a machine

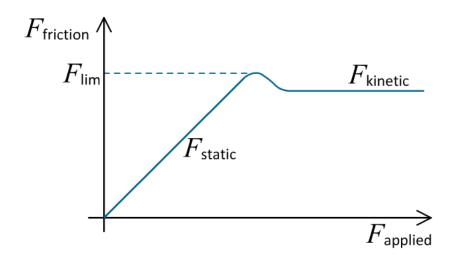
Methods of minimizing friction

- Friction can be minimized by making the contact surfaces smooth.
- Friction can be minimized by lubricants. Lubricants form a thin fluid layer between the solid parts of machinery which results in reduction of friction.
- Friction can be minimized by streamlining.

 Streamlining leads to lesser force exerted by the body on the medium and as a reaction the medium also exerts lesser force on the object.
- ☐ Friction can be minimized by introduction of ball bearings.

Introduction of ball bearings changes the nature of friction between the surfaces from sliding friction to rolling friction (which is about 2 to 3 orders of magnitude less than sliding friction).


Types of friction


- ☐ Static friction (when a body is at rest)
- ☐ Kinetic or sliding friction (when the relative motion between the surfaces is due to sliding)
- Rolling friction (when a body rolls over another body or a surface)

An investigation

A block, placed on a table is connected to a weight hanger by a string passing over a pulley. Weights are gradually added to the weight hanger and subsequent motion is observed.

- ☐ When weights are added, the block continues to remain stationary initially
- ☐ When more weight is added then the block undergoes acceleration

Static friction

- ☐ Frictional force between surfaces which are at rest relative to each other is called static frictional force.
- ☐ Static frictional force is directly proportional to the normal reaction
- ☐ Static frictional force depends on the nature of surfaces in contact.
- ☐ Static frictional force is self adjusting in nature
- The maximum possible value of static friction is called limiting friction

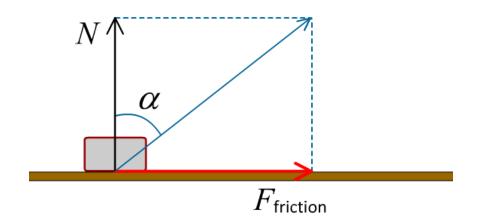
$$F_{\rm s} \propto N$$

$$F_{\rm s} = \mu_{\rm s} N$$

- \square μ_s is called coefficient of static friction
- ☐ It depends on the nature of surfaces in contact

Note : F_s mentioned above is <u>limiting</u> frictional force

Angle of friction


It is the angle between the normal reaction and the resultant of frictional force and normal reaction on the body

$$\tan(\alpha) = \frac{\mathsf{opp}}{\mathsf{adj}}$$

$$\tan(\alpha) = \frac{F_{\text{friction}}}{N}$$

$$\tan(\alpha) = \frac{\mu N}{N}$$

$$tan(\alpha) = \mu$$

Click here for simulation

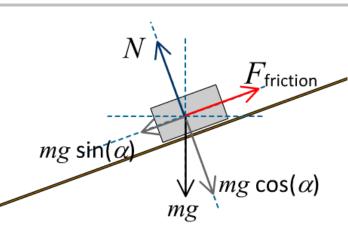
Angle of friction may also be defined as the angle between the contact force and the normal reaction

Kinetic friction

- ☐ Frictional force between bodies which are sliding relative to each other is called sliding frictional force.
- ☐ Kinetic frictional force is constant for moderate velocities
- Kinetic frictional force is directly proportional to the normal reaction
- ☐ Kinetic frictional force depends on the nature of surfaces in contact.

$$F_{\rm k} \propto N$$

$$F_{\rm k} = \mu_{\rm k} N$$


- \square μ_k is called coefficient of kinetic friction
- \Box $\mu_{k} < \mu_{s}$
- ☐ It depends on the nature of surfaces in contact

Angle of repose

It is the maximum angle of an inclined plane for which the body placed on it remains stationary.

Consider a body of mass m placed on a rough inclined plane. Let μ_s be the coefficient of static friction between the body and the ground.

Click here for simulation

Considering component of forces perpendicular to the plane

$$N - mg\cos(\alpha) = 0$$

$$N = mg\cos(\alpha)$$
 —

Considering component of forces parallel to the plane

$$mg\sin(\alpha) - F_{\text{friction}} = 0$$

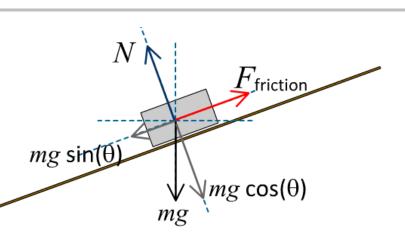
$$mg\sin(\alpha) - \mu_{\rm s}N = 0$$

 α

Substituting N from equation (i)

$$mg\sin(\alpha) - \mu_s mg\cos(\alpha) = 0$$

$$mg\sin(\alpha) = \mu_s mg\cos(\alpha)$$


$$sin(\alpha) = \mu_s cos(\alpha)$$

$$tan(\alpha) = \mu_s$$

H

Acceleration of a body on a rough inclined plane

Consider a body of mass m placed on a rough inclined plane. Let the coefficient of kinetic friction between the body and the plane be μ_k .

Click here for simulation

Considering component of forces perpendicular to the plane

$$N - mg\cos(\theta) = 0$$

$$N = mg\cos(\theta)$$
 i

Considering component of forces parallel to the plane

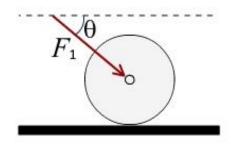
$$mg\sin(\theta) - F_{\text{friction}} = ma$$

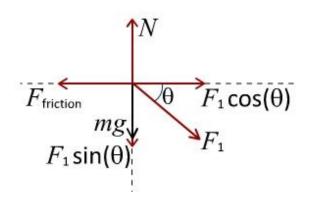
$$mg \sin(\theta) - \mu_k N = ma$$

Substituting N from equation (i)

$$mg\sin(\theta) - \mu_k mg\cos(\theta) = ma$$

$$a = g \sin(\theta) - \mu_k g \cos(\theta)$$


$$a = g[\sin(\theta) - \mu_k \cos(\theta)]$$


Pulling is easier than pushing

Consider a lawn roller placed on a horizontal surface. Let μ be the coefficient of friction between the lawn roller and the ground.

Case I : pushing the lawn roller

A force F_1 , applied at an angle θ w.r.t. the horizontal, is used to push the lawn roller.

Considering vertical component of forces

$$N + (-F_1 \sin(\theta)) + (-mg) = 0$$

$$N = F_1 \sin(\theta) + mg$$

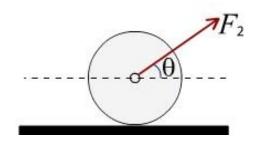
Considering horizontal component of forces

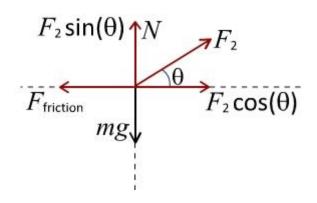
$$F_1\cos(\theta)+(-F_f)=0$$

$$F_1\cos(\theta) = \mu_s N$$

Substituting N from eq (i) we get

$$F_1\cos(\theta) = \mu_s [F_1\sin(\theta) + mg]$$


$$F_{1} = \frac{\mu_{s} mg}{\left[\cos(\theta) - \mu_{s}\sin(\theta)\right]}$$


ii

Pulling is easier than pushing

Case II: pulling the lawn roller

A force F_2 , applied at an angle θ w.r.t. the horizontal, is used to pull the lawn roller.

Considering vertical component of forces

$$N + F_2 \sin(\theta) + (-mg) = 0$$

$$N = mg - F_2 \sin(\theta)$$
 iii

Considering horizontal component of forces

$$F_2\cos(\theta)+(-F_f)=0$$

$$F_2\cos(\theta) = \mu_s N$$

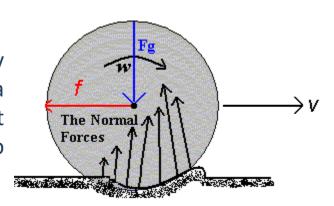
Substituting N from eq (iii) we get

$$F_2\cos(\theta) = \mu_s [mg - F_2\sin(\theta)]$$

$$F_{2} = \frac{\mu_{s} mg}{\left[\cos(\theta) + \mu_{s}\sin(\theta)\right]}$$
 iv

Comparing equations (ii) & (iv) it is observed that $F_1 > F_2$. Therefore pulling a lawn roller is easier than pushing it.

Rolling friction


- ☐ Frictional force between bodies in which one body is rolling over the other is called rolling frictional force.
- Rolling frictional force is directly proportional to the normal reaction
- Rolling frictional force depends on the nature of surfaces in contact.

$$F_{\rm r} \propto N$$

$$F_{\rm r} = \mu_{\rm r} N$$

- \Box $\mu_{\rm r}$ is called coefficient of rolling friction
- $\square \quad \mu_{\rm r} < \mu_{\rm k} < \mu_{\rm s}$

During rolling, the surfaces in contact get momentarily deformed a little, and this results in a finite area (not a point) of the body being in contact with the surface. The net effect is that the component of the contact force parallel to the surface opposes motion.

